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Abstract  

         Modelers combine methods and skills in mathematics and 

computation with the specialised knowledge of healthcare 

experts to arrive together at appropriate solution to problem in 

healthcare. 

       This paper attempts to lay out a mathematical model to 

design radiation therapy by linear programming. This model is 

solved by using the Big M method. 

 

Keywords: Mathematical model, linear programming, radiation 

therapy, healthcare . 

  
 

 

 

 

 

 

 

 

 

 



 



1 

 

1.Introduction  

          Many application of science make use of models. the term 'model' is usually 

used for a structure that has been built with the purpose of exhibiting features and 

characteristics of some other objects. More often, in operational research, we will 

be concerned with abstract models. these models will usually be mathematical in 

that algebraic symbolism will be used to mirror the internal relationships in the 

object (often an organization) being modeled. the essential feature of a 

mathematical model in operational research is that it involves a set of mathematical 

relationship ( such as equations, inequalities and logical dependencies ) that 

correspond to some more down -to-earth relationships in the real world (such as 

technological relationships, physical laws and marketing constraints ). 

Generally speaking, engineers and scientists try to understand, develop, or 

optimize "systems".  

Here, "system" refer to the object of  interest, which can be a part of nature ( such 

as a plant cell, an atom, a galagxy ect.) or an artificial technological system  

Over time, mathematical modeling has proven to be a useful tool for indentifying 

the patterns of disease spread during epidemics by projecting plausible scenarios 

using the best available information and data.  

Mathematical model simulate complex systems in relatively fast time without the 

enormous costs of laboratory experiments and the biological variations. 

particularly for oncology, such models can be calibrated using experimental or 

clinical data and competing hypotheses of tumor progression can be evaluated and 

treatment options thoroughly analyzed before clinical intervention . the application 

of mathematical in pharmacokinetics by using one or two compartment models is 

discussed. 

          The reminder of this paper is structured as follows. Section 2 presents the 

linear programming model. Provides a design of radiation therapy problem. 

Section 4 presents formulation as a linear programming model with solution of the 

model. Conclusions are given in section 5. 
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1.1 Mathematical modeling 

       A mathematical model is representation of a system or scenario that is used to 

gain qualitative and or quantitative understanding of some real world problems and 

to  predict future behavior. Models are used in a variety of disciplines ,such as 

biology, engineering , computer science, psychology ,sociology ,and marketing 

.Because models are abstractions of reality ,they can lead to scientific advances , 

provide the foundation for new discoveries , and help leaders make informed 

decision the aim of this section to help to demystify the process of  how  a 

mathematical model can be built . Building a useful math model dose not 

necessarily require advanced . 

Mathematics or significant expertise in any of the fields listed above . It dose 

require a willingness to do some research , brainstorm ,  and jump right  in and try 

something that may be out of your comfort zone . 

Figure (1) will help to understand each of the components of math modeling . Its 

important to remember that this isnt necessarily a  sequential list of steps ,math 

modeling is an iterative process, and the key steps may be revisted multiple times 

.Steps may be revested multiple times. 

 

 

  



4 

 

 1.2 The problem statement 

Modeling problem are often open ended. Some math modeling problems are 

clearly defined, while others are ambiguous. This means there is an opportunity for 

creative problem solving and interpretation. In some cases, it is up to the modeler 

to define the outputs of the model and which key concepts will be quantified. 

Defining the problem statement requires some research and brainstorming. The 

goal is a concise statement that explains what the model will predict. 

We can summarize defining the problem statement in the following steps: 

Step I: Often math modeling questions are worded in ways that allow for multiple 

approaches, so we should develop a concise restatment of the question at hand. 

Step 2: Focus on subjective words that can be interpreted in different ways. Also, 

identify words that are not easily quantified. Examples include best, thrilling, 

efficient, robust and optimal. 

Step 3: Explore the problem by doing a combination of research and 

brainstorming, keeping in mind our time constraints. 

Step 4: Keep an open mind and a positive attitude: we can prune out ideas later 

that are not realistic. 

Step 5: Brainstorming should be approached as if we had access to any data we 

need. 

Step 6: visual diagrams, such as mind maps, can be a powerful tool leading to the 

structure of the model. Consider using the website free mind. 

Step 7: In the end, we should have a concise statement that explains what the 

model will measure or predict. 
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1.3 Making assumptions 

In presenting any scientific work to others, we need to explain how the 

results were achieved with explicit details so that they can be if we repeated 

explaining a chemistry experiment, for example, you need to list (among other 

things) which chemicals were used in what quantities and in what order. Other 

chemists would expect similar results only when they used the same chemicals and 

procedure. The list of assumptions for a model is as critical as the experimental 

procedure in performing a chemistry experiment. The assumptions tell the reader 

under what conditions the model is valid. Making assumptions can be one of the 

most intimidating parts of the modeling process for a novice, but it need not be! 

Assumptions are necessary and help we make a seemingly impossible question 

much more tractable. Many assumptions will follow quite naturally from the 

brainstorming process. 

We can summarize making assumption in the following steps: 

Step 1: Assumptions often come naturally from the process of brainstorming and 

defining the problem statement. 

Step 2: we should do some preliminary research and may find data to help us make 

assumptions. In the absence of relevant data, make a reasonable assumption and 

justify the assumption in our write-up. 

Step 3: Different assumptions can lead to different, equally valid models at 

different mathematical levels. 

Step 4: Not all assumptions are made during the initial brainstorming some come 

as we move through the modeling process. Keep track of the assumptions we make 

and include a list of assumptions in our write-up of the model. 
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1.4 Definition variables 

With the problem statement clearly defined and an initial set of assumptions 

made (a list that will likely get longer), we are ready to start to define the details of 

our model. Now is the time to pause to ask what a measure. Identifying these 

notions as variables, with units and some sense of their range is key to building the 

model. The purpose of a model is to predict or quantify something of interest. We 

refer to these predictions as the outputs of the model another term use for out puts 

are dependent variables. We will also have independent variables, or inputs to the 

model. Some quantities in a model might be held constant, in which case they are 

referred to as model parameters. 

We can summarize definition variable in the following step: 

Step 1: The problem statement should .determine the output of the model. The 

output will be dependent variables. 

Step 2: The results of the initial brainstorming can provide insight into which 

variables should be independent variables and which should be fixed model 

parameters. 

Step 3: Keep track of units because they can reveal relationships between 

variables.  

Step 4: We will likely need to do some research and make additional assumptions 

to obtain values for necessary model parameters. 

Step 5: Sub models or multiple models may be needed to generate some of the 

model input. 

 

 

 

 

 

 

 

 



7 

 

 

1.5 Building Solutions 

Now that we have an initial mathematical model we will need to use that model 

to generate preliminary answers to the question at hand. The approach we take of 

course depends on the type of model we have and our background in mathematics. 

It may involve simply considering some different values of certain parameters to 

see how the output changes, it may involve techniques from calculus or differential 

equations, or it may involve using graphs to understand trends in data. In this 

chapter we will give we some strategies for choosing how to solve our problem. 

When we first approach any mathematical problem, we often look into our 

personal tool kit for a mathematical technique to use. Sometimes, if we start with 

the incorrect approach, a better approach will naturally emerge. So, the important 

thing is to just tackle it and see what happens! 

We can summarize Building Solutions in the following steps: 

step: How we build a solution may depend on what mathematical tools 

Are available ours.  

Step1: There is often more than one way to tackle a problem, so just start and see 

what happens. 

Step3: If we don't immediately know how to solve the problem at hand ask ours 

the provided set of questions to help us get started. 

Step, 4: Different solution methods can lead to solutions of different natures. This 

is perfectly acceptable. 
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1.6: Analysis and model assessment 

Often we are so excited that we built and solved a mathematical model that we 

forget to step back and carefully examine the results. While this is understandable 

since it took hard work to get to that point, it is essential to ask ours, "Does my 

answer make sense?" Sometimes, the results indicate a mistake in the calculations. 

Other times may that we find additional or alternate assumptions are needed for the 

solution to be realistic. If the results do make sense, then further analysis is needed 

to assess the quality of the model. Recall that open-ended questions may have 

more than one solution and that the results depend on the assumptions made and 

the level of sophistication of the mathematics used. An honest evaluation is 

necessary to explain when the model is applicable and when it is not. In this 

section we will talk about ways to applicable us and how to assess the quality of 

your model. During process, we may gather some intuition about what the 

modeling process; we may gather some intuition about what the output will be like. 

Here we provide some pointers on how to answer the output will be question 

"Does my answer make sense?" by analyzing the output of the model. 

Is the sign of the answer correct? For example, if our disease model is supposed 

to calculate the number of infected people at a certain time, then clearly an answer 

of -1000 would not make sense. Carefully check our calculations, especially if we 

are using software. For example, in Excel it is easy to select the wrong cell when 

defining a formula. Our model may be correct, but its implementation may be at 

fault.  

. Is the magnitude of the answer reasonable? If we are trying to estimate the 

speed of a car, for example, then it wouldn't make sense it our model predicts a 

value of 1000 miles per hour. Sometimes, when the magnitude of a number is off, 

incorrect units may have been used somewhere in the process. 

. Does the model behave as expected? If the output of your model is visualized 

with a graph or plot of any kind, then carefully look at the intercepts, the maximum 

or minimum values, or the long-term behavior. Were we expecting a horizontal 

asymptote, yet our graph just increases without bound? If we have a data set and 

believe there is a relationship between two variables, plot the data. A mathematical 

error in the sign of the slope will be immediately obvious. It could be that we had 

some assumptions which were neglected, erroneous units, unrealistic parameters, 

or that the software was used incorrectly. 

. Can you validate the model? Sometimes it is possible to validate our model 

using available data. For example, if we used our roller coaster ranking model on 

the Top Thrill Dragster of Cedar Point, which held the record for the tallest roller 

coaster in the world and goes 120 mph, and the said it was only mediocre, then 
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likely our model is not doing what we want it to Now that we have verified that our 

model is correct, it is time to step back and consider the validity of our model. This 

includes identifying the strengths and weaknesses of our model and understanding 

at a deeper level the behavior of the model. Performing a sensitivity analysis, 

wherein we analyze how changes in the input and parameters impact the output, 

can contribute to understanding the behavior of our model Once we are convinced 

that the output is correct and the model is achieving what we want, assess the 

quality of model. This assessment needs be included in the write-up about our 

model to help people understand the conditions under which our model is 

applicable, which is strongly linked to the assumptions that were made along the 

way. It is necessary for us to provide an honest, exact assessment of the 

capabilities of our model. This is also a chance to highlight the strengths of the 

model. For example, even if a model was formulated using simple physics, it might 

require very little expert knowledge in order to provide meaningful insight. This 

can be a huge advantage over a more complex model that requires the user to 

program and run software, research other model parameters in order to fit the 

model to his or her own needs, or sort through complicated output to be able to 

draw a conclusion. It is also strength if the people who might use our model can 

understand it and have faith in it. If time allows, assessment and sensitivity 

analysis can lead to improvements in the model. Modeling, as pointed out earlier, 

is an iterative process, and refinements can almost always be made to develop 

more realistic model. If the modeling is being done in a timed setting such as for a 

competition or a homework assignment, then this may not be possible (although it 

is generally possible to indicate the type of refinements that would improve the 

model). However, for long-term projects, the model assessment really is an 

intermediate step before (possibly) starting the modeling loop over again. 

Discussing possible modifications to the model, even if we cannot make them, 

demonstrates that we are able to think beyond just the first approach. 
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We can summarize analysis and model assessment in the following steps: 

Step l: Be sure to allocate time to analyze our results since it is indeed a critical 

part of the entire modeling process. 

Step 2: Always examine the output we get from our model and ask ours if it makes 

sense. If our answer doesn't make sense, verify that we haven't made a mistake in 

implementing our model. 

Step 3: If our solution is consistent with our assumptions but not consistent with 

the real-world phenomenon we are trying to describe, we may need to refine our 

model by adjusting our assumptions. 

Step 4: List strengths and weaknesses of our model. 

Step 5: Try to determine how sensitive our model is to parameters and 

assumptions. 

Step 6: Include specific improvements we would have incorporated given more 

time. 
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2.1 Introduction to linear programming 

Certain symbols are commonly used to denote the various components of a linear 

programming model. These symbols are listed below. A long with their 

interpretation for the general problem of allocating resources to activities 

z=value of overall measure of performance 

  = level of activity j (for j=1,2,3... ,n) 

c j= increase in z that would result from each unit increase in level of activity j. 

bi= amount of resource i that available for allocation to activities (for i=1,2,...,m) 

aij= amount of resource i consumed by each unit of activity j. 

The model poses the problem in terms of making decisions about the levels of the 

activities, so x1,x2/...,xn are called the decision variables. As summarized in table 

2.1 the values of cj ,bi ,and aij (for i=l,2,...m, and j=l,2,3,...,n) 

are the input constants for the model, the Cj ,bj, and aij are also referred to as the 

parmateters of the model. 

Notice the correspond dence between (table 2.1) . 

2.2   A standard form of the model 

      We can now formulate  the mathematical model for this general problem of 

allocating resources to activities. In particular, this model is to select the values for 

x1,x2,x3,..., xn. so as to 

Maximize   z  = c1 x1 +c2 x2+...+c n x n 

Subject to  

a11x1 + a12x2+...+a1n x n ≤ b1 

a21 x1+ a22 x2 +...+ a2n xn ≤ b2 

. 

am1x1 + am2 x2 +...+ a mn xn ≤ b mn 
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Table 2.1 

Data needed for linear programming model involving allocation of resources to 

activities. 

 

 

Resources 

 

Resource usage unit of Activity 

 

Amount of  

Resources 

 

Activity  

1- 

2- 

. 

. 

. 

m 

 

 

a 11               a12                  a1n 

a 12               a22                  a2n 

…                  …                   … 

…                  …                  … 

…                  …                   … 

am1                am2                 am n 

b 1 

b 2 

 

 

 

bm 

 

Contribution to z 

Per unit of activity 

c1                c2                        cn  
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2.3 Other forms  

We now hasten to add that the preceding model does not actually fit the 

natural form of some linear programming problems. The other legitimate forms are 

the following:- 

1.minizing rather than maximizing the objective function: 

Minimize z=c1 x2 + c2 x2 + ...+c n x n 

2.some functional constraints with a greater than -or- equal - to inequality 

ai1x1+ a2 x2 +..........+ ainxn ≤ bj     

For some values of i. 

3.some functional constraints in equation from:-a11x1 + a12x2+...+ ainxn = bj 

For some values of i. 

4.Deleting the nonnegative constrains for some decision variables : xj unrestricted 

in sign for some values of i. 

Any problem that mixes some of all these forms with the remaining parts of the 

preceding model is still a linear programming problem. Our interpretation of the 

words allocating limited resources among competing activities may no longer 

apply very well. If at all: but regardless of the interpretation or context. All that is 

required is that the mathematical statement of the problem f it the allowable forms. 

 

2.4 Terminology for solution of the model 

      A feasible solution is a solution for which all the constraint are satisfied and an 

infeasible solution is a solution for which at least one constraint is violated. 

The feasible region is the collection of all feasible solutions  

Notice:- 

It is possible for a problem to have no feasible solutions  An optimal solution is a 

feasible solution that has the most favorable value of the objective function. 
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The most favorable value is the largest value if the objective function is to be 

maximized. 

Where as it is the smallest value if the objective function is to be minimized. 

Most problems will have just one optimal solution However it  is possible to have 

more than one. 

Another possibility is that a problem has no optimal solutions. This occurs only if 

(1) it has no feasible solution or (2) the constraints do not prevent improving the 

value of the objective function (z) indfinitely in the favorable direction (positive or 

negative). The letter case is referred to as having an unbounded z. 

A corner _ point feasible (CPF) solution is a solution that lies  at a corner of the 

feasible region. 

2.5 Relationship Between Optimal Solution and CPF 

Solution:-  

Consider any linear programming problem with feasible solution and a bounded 

feasible region. The problem must Posses CPF solutions and at least one optimal 

solution. Furthermore , the best CPF solution must be an optimal solution, thus , if 

a problem has exactly one optimal solution it must be a CPF solution. If the 

problem has multiple optimal solutions, at least two must be CPF  solutions. 

2.6 simplex method 

1- Initialization Initial non-basic variables (set equal to zero) and the slack 

variables to be the initial basic variables, 

2- optimality test:- the current BF solution is optimal if and only if every 

coefficient in row is non-negative (> 0 ). 

If it is stop; otherwise, go to an iteration to obtain the next BF solution, which 

involves changing one non-basic variable to basic variable (step l) and vice verse 

(step 2) and then solving for the new solution (step3). 

3- Iteration : step (1):- Determine the entering basic variable by selecting the 

variable (automatically a non-basic variable ) with the negative coefficient having 

the largest absolute value(i.e, the "most negative" coefficient) in Eq.(O) 

Put a box around the column below this coefficient and call this the point column. 

Step(2):- determine the leaving basic variable by applying the minimum ratio test. 
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Minimum ratio Test 

1- Pick out each coefficient in to pivot column that is strictly positive (> 0). 

2- Divide each of these coefficients into the right side entry for the same row. 

3- Identify the row that has the smallest of these ratios. 

4- The basic variable for that row is the leaving basic variable, so replace that 

variable by the entering basic variable in the basic variable column of the next 

simplex tableau. 

Put a box around this row and call it the pivot row. Also call the number that is in 

both boxes the pivot number. 

Step (3) solve for the new BP solution by using elementary row operation 

(multiply or divide a row by a non-zero constant, and or subrat a multiple of one 

row to another row) to construct a new simplex table au in proper form from 

Gaussian elimination below the current one , and then return to the optimally test. 

The specific elementary row operations that need to performed are listed below. 

Divide the pivot row by the pivot number, use this new pivot row in step2 and 3. 

For each other row (including row 0) 

That has a negative coefficient in the pivot column , add to this row the product of 

the absolute value of this coefficient and the new pivot row. 

For each other row that has a positive coefficient in the 

pivot column , subtract from this row the product of this coefficient 

and the new pivot row. 
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2.7 Big  M-method 

We have presented the details of the Simplex method under the assumption that the 

problem is in  our standard from (maximize Z subject to functional constraint 

in<from and non negativity constraints an all variables)and that bi ≥ 0 for all 

i=1,2,…,m .In this section we point .Out how to make the adjustments required for 

other legitimate forms of the linear programming model .You will see that all these 

adjustments can be made during the initialization ,so the rest of the Simplex 

method can ,then be applied just as you have learned  it already. 

    The only serious problem introduced by the other forms for functional 

constraints 

(the =or ≥ forms ,or having a negative right-hand side)lies in identifying an initial 

BF Solution .Before ,this initial solution was found very conveniently by letting 

the slack variables be the initial basic variables, so that each one just equals the 

nonnegative right-hand side of its equation. 

Now ,something else must be done .the standard approach that is used for all these 

Cases is the artificial-variable technique .This technique constructs a more  

Convenient artificial problem by introducing adunmy variable called an artificial 

variable ) into each constraint that needs one ,this new variable is introduced just 

for the purpose of being the initial basic variable for that question the usual non-

negativity constraints are placed on these variable, and the objective function also 

is modified to impose an exorbitant penalty on their  having values larger than 

zero. The iteration of the Simplex method then automatically force the artificial 

variable to disapper (became zero). However, rather than making this substitution 

and there by increasing the number of constraints it is more convenient to use the 

artificial-variable technique.  
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         Design of  Radiation Therapy Problem  
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3.1 Design of Radiation Therapy Problem 

      A patient has been diagnosed as having a cancer at an advanced stage. The 

patient has a large malignant tumor in the bladder area. A patient is to receive  the 

most advanced medical care available to give the patient every possible chance for 

survival. This care will involves extensive radiation therapy. 

     Radiation therapy problem includes using an external beam treatment machine 

to pass ionizing radiation through the patient’s body, damaging both cancerous and 

healthy tissues. Several beams are administered precisely from different angles in a 

two-dimensional plane. Each beam delivers more radiation to the tissue near the 

entry point than to the tissue near the exit point. Also, scatter causes some delivery 

of radiation to tissue outside the direct path of the beam. Since tumor cells are 

typically microscopically interspersed among healthy cells, the radiation dosage 

throughout the tumor region must be large enough to kill the malignant cells, 

which are slightly more radiosensitive, yet small enough to spare the healthy cells. 

At the same time, in order to prevent complications that can  be more serious than 

the disease itself, the aggregate tolerance levels. For the same reason, the total dose 

must be minimized to the entire healthy anatomy. 

    The design of radiation therapy is a very delicate process, because of the need to 

carefully balance all these factors. The aim of the design is to select the 

combination of beams to be used and the intensity of each one to generate the best 

possible dose distribution. At any point in the body, the dose strength is measured 

in units called kilorads. Once the design of treatment has been developed, it is 

administered in many installments, spread over several weeks. 

      In patient’s case, the size and location of tumor make the design of treatment 

are even  more delicate process than usual. Figure 3.1 shows a diagram of the 

tumor cross section viewed from above, as well as nearby critical tissues to avoid. 

These tissues involve critical organs (e.g., the rectum) as well as bony structures 

(e.g., the femurs and pelvis) that will attenuate the radiation. In this case, also 

shown are the entry point and direction for the only two beams that can be used 

with any modicum of safety.  

 

 

Figure 3.1 
Cross section of patient’s tumor viewed from above, nearby critical tissues and the 

radiation beams being used.  
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          The analysis of what the resulting radiation absorption by various parts of 

the body would be requires a complicated process, for any proposed beam of given 

intensity. In abbreviation, based on careful anatomical analysis, the energy 

distribution within the two dimensional cross section of the tissue can be plotted on 

an isodose map, where the contour lines represent the dose strength as a percentage 

of the dose strength at the entry point. A fine grid then is placed over the isodose 

map. By summing the radiation absorbed in the squares containing each type of 

tissue, the average dose that is absorbed by the tumor, healthy anatomy, and 

critical tissues can be calculated. With more than one beam (administered 

sequentially), the radiation absorption is additive.  

      After analysis of this type, the medical team has carefully estimated the 

data needed to design patient’s treatment, as summarized in table 3.1. The 

first column includes the areas of the body that must be considered, and 

then the next two columns give the fraction of the radiation dose at the 

entry point for each beam that is absorbed by the respective areas on 

average. For example, if the dose level at the entry point for beam 1 is 1 

kilorad, then an average of 0.4 kilorad will be absorbed by the entire 

healthy anatomy in the two-dimensional plane, an average of 0.3 kilorad 

will be absorbed by nearby critical tissues, an average of 0.5 kilorad will 

be absorbed by the various parts of the tumor, and 0.6 kilorad will be 

absorbed by the center of the tumor. The last column gives the restrictions 

on the total dosage from both beams that is absorbed on average by the 

respective areas of the body. In particular, the average dosage absorption 
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for the healthy anatomy must be as small as possible, the critical tissues 

must not exceed 2.7 kilorads, the average over the entire tumor must equal 

6 kilorads.  

Table 3.1 Data for the design of patient’s radiation therapy  

 

 

       Area   

 

 Fraction of Entry 

Dose Absorbed by 

 Area (Average) 

 

   Restriction on Total Average 

           Dosage, Kilorads 

  Beam1         Beam2 

Healthy 

anatomy 

Critical tissues 

Tumor region  

Center of 

tumor  

    0.4                  0.5 

    0.3                  0.1 

    0.5                  0.5 

    0.6                  0.4 

                Minimize 

                   ≤ 2.7 

                     = 6 

                     ≥ 6  

 

3.2 Formulation as a Linear Programming Model 

        The dosages of radiation at the two entry points are the decisions that need to 

be made. Hence, the two decision variables x1 and x2 represent the dose in kilorads 

at the entry point for beam 1 and beam 2, respectively. Because the total dosage 

reaching the healthy anatomy is to be minimized, let Z denote this quantity. The 

data from Table 3.1 can be used directly to formulate the linear programming 

model as follows : 

        

 

 Minimize  Z = 0.4x1+0.5x2 

Subject to 

     0.3x1+0.1x2 ≤ 2.7 

     0.5x1+0.5x2 = 6 

     0.6x1+0.4x2 ≥ 6  

      x1 ≥ 0, x2  ≥ 0. 

        This model can be solved by the Big M method. First we must describe how 

to deal with the third constraint. 

        Our approach includes introducing both a surplus variable x5 (defined as 

 x5 =0.6x1+0.4x2 −6) and an artificial variable  ̅6 as shown next . 

0.6x1+0.4x2−x5 = 6      (x5 ≥ 0) 

0.6x1+0.4x2−x5+  ̅6 =6       (x5 ≥ 0, ̅6 ≥ 0). 
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x5 is called a surplus variable because its subtracts the surplus of the left-hand side 

over the right-hand side to convert the inequality constraint to an equivalent 

equality constraint. After  this conversion is accomplished, the artificial variable is 

introduced just as for any equality constraint. 

  After a slack variable x3 is introduced into the first constraint, an artificial 

variable  ̅4 is introduced into the second constraint, and the Big M method is 

applied, so the complete artificial problem (in augmented form) is   

 

    Minimize Z = 0.4x1+ 0.5x2+ M ̅4 + M ̅6   

      subject to       0.3x1 + 0.1x2 + x3 = 2.7  

                             0.5x1 + 0.5x2 +  ̅4 = 6 

                             0.6x1 + 0.4x2   x5  + ̅6 = 6  

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,  ̅ 4 ≥ 0, x5 ≥ 0,  ̅6 ≥ 0.  

      Note that the coefficients of the artificial variables in the objective function are 

+M, instead of  M, because we now are minimizing Z. Thus, even though  ̅4 > 0 

and/or  ̅6 > 0 is possible for a feasible solution for the artificial problem, the huge 

unit penalty of +M prevents this from occurring in an optimal solution.   

     A straightforward way of minimizing Z with the Simplex method is to exchange 

the roles of the positive and negative coefficients in row 0 for both the optimality 

test and step 1 of an iteration. However, rather than changing our instructions for 

the Simplex method for this case, we present the following simple way of 

converting any minimization problem to an equivalent maximization problem: 

 

Minimizing  Z=∑   
   jxj 

is equivalent to  

    maximizing     Z= ∑     
   j)xj  

i.e., the two formulations yield the same optimal solution (s). 

      The two formulations are equivalent because the smaller Z is, the larger –   is, 

so the solution that gives the smallest value of Z in the entire feasible region must 

also give the largest value of –   in this region.  

Therefore, in the radiation therapy problem, we make the following change in the 

formulation: 

Minimize   Z=0.4x1 +0.5x2  

Maximize     =    x1 0.5x2. 

After artificial variables  ̅4 and  ̅6 are introduced and then the Big M method is 

applied, the corresponding conversion is  

 Minimize Z= 0.4x1+0.5x2+M ̅4+M ̅6 

Maximize –Z  = −0.4x1−0.5x2−M ̅4 M ̅6. 
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   Now, we are nearly to apply the Simplex method to the radiation therapy 

problem. By using the maximization form, the entire system of equations is now  

(0)     –Z+0.4x1+0.5x2+M ̅4+M ̅6 = 0 

(1)       0.3x1+0.1x2+x3=2.7 

(2)       0.5x1+0.5x2+ ̅4=6 

(3)      0.6x1+0.4x2 x5+ ̅6=6. 

The basic variables (x3,  ̅4,  ̅6) for the initial basic feasible solution (for this 

artificial problem) are shown in bold type.  

Note that this system of equations is not yet in proper form from Gaussian elimination, as 

required by the simplex method, since the basic variables  ̅4 and  ̅6 still need to be 

algebraically eliminated from Eq. (0). Because  ̅4 and  ̅6  both have a coefficient of M, Eq. 

(0) needs to have subtracted from it both M times Eq. (2) and M times Eq. (3). The 

calculations for all the coefficients (and the right-hand sides) are summarized below, 

where the vectors are the relevant rows of the simplex tableau corresponding to the above 

system of equations. 

Row 0: 

           [0.4,                  0.5,            0,       M,      0,        M,              0] 

      M[0.5,                   0.5,              0,       1,        0,          0,               6] 

       M[0.6,                  0.4,              0,       0,       1,        1,                6] 

New row 0=[ 1.1M+0.4,     0.9M+0.5,    0,       0,       M,        0,          12M] 

The resulting initial simplex tableau, ready to begin the simplex method, is shown 

at the top of Table 4.1. Applying the simplex method in just the usual way then 

yields the sequence of simplex tableaux shown in the rest of Table 4.1. 
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Table 3.1 The Big M method for the radiation therapy problem  

                 

Basic 

                         

Variable    

 

 

 

Eq. 

                                   

                                          Coefficient of: 

                   

Right 

                 

Side  

 

Z           x1                            x2                          x3                     ̅4                            x5                              ̅6 

 Z                 

x3                   

 ̅4                

 ̅6                

 (0) 

 (1) 

 (2) 

 (3) 

   
  0 

  0 

  0 

                     0.9M+ 0.5                0                      0                     M                 0                

       0.3                        0.1                            1                      0                     0                  0       

      0.5                        0.5                             0                      1                      0                 0      

      0.6                        0.4                             0                      0                                      1                 

     
     2.7 

      6 

      6 

Z            

x1                

 ̅4                             

 ̅6         

(0) 

(1) 

(2) 

(3) 

   

  0 

  0 

  0 

      0                       

  
    

  
               

 
   

 
                       0                  M                      0 

      1                            
 

 
                           

  

 
                         0                   0                       0 

      0                            
 

 
                          

 

 
                        1                    0                       0 

      0                          0.2                                                  0                                         1 

        6 

         9 

        1.5 

        0.6 

 Z                   

x1                                        

 ̅4                               

x2                       

(0) 

(1) 

(2) 

(3) 

   

  0 

  0 

  0 

       0                          0                      

 
   

 
                    0              

 
    

 
       

    
    

 
   

       1                         0                         
  

 
                           0                 

 

 
                         

 

 
 

       0                         0                          
 

 
                            1                 

 

 
                        

 

 
 

       0                         1                                                   0                                          5 

          

           8 

          0.5 

           3 

Z                

x1                       

x5                      

x2 

(0) 

(1) 

(2) 

(3) 

   
  0 

  0 

  0 

       0                        0                         0.5                        M                0                       M 

       1                        0                          5                                               0                        0 

       0                        0                         1                           0.6                   1                        

       0                        1                                                      3                   0                        0 

              
         7.5 

                                                     

0.3 
          4.5 

 

 

Hence, the optimal design is to use a total dose at the entry point of 7.5 kilorads for 

beam 1 and 4.5 kilorads for beam2.  

 

3.3 Conclusions           

    Mathematical modeling is a powerful tool for planning and decision making in 

healthcare. In this paper, the linear programming model for the radiation therapy  

problem is presented and this model is solved by using Big M method to obtain the 

optimal design. 
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 الخلاصة

  المعرفة المتخصصةبات مع اسالطرق والمهارات في الرياضيات والحاساليب لدمج في هذا البحث نقدم 

تم في هذا البحث  . الرعاية الصحيةفي قطاع مشاكل لل ةملائم وللوصول الى حللالرعاية الصحية  لخبراء

العلاج بالاشعاع بأستخدام البرمجة الخطية. تم حل هذا النموذج بأستخدام  تصميم  نموذج رياضي لمسألة

 Big M Method طريقة 

 , البرمجة الخطية, العلاج الاشعاعي, الرعاية الصحية.يوذج الرياض: النمكلمات مفتاحية 
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 جمهورية العراق

 وزارة التعليم العالي

 والبحث العلمي

 جامعة ديالى/كلية العلوم

 

 

 

 

 

  باستخدام البرمجة الخطية العلاج الاشعاعي تصميم

 

تم تقديمه الى قسم علوم الرياضيات بجامعة ديالى في انجاز جزئي لدرجة مشروع 

في  الرياضياتالبكالوريوس   
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